| Function | Time domain |
Laplace s-domain |
Region of convergence | Reference |
|---|---|---|---|---|
| unit impulse | inspection | |||
| delayed impulse | time shift of unit impulse |
|||
| unit step | integrate unit impulse | |||
| delayed unit step | time shift of unit step |
|||
| ramp | integrate unit impulse twice |
|||
| nth power (for integer $n$) |
$n \gt -1$ |
Integrate unit step $n$ times |
||
| nth power with frequency shift |
Integrate unit step, apply frequency shift |
|||
| delayed nth power with frequency shift |
Integrate unit step, apply frequency shift, apply time shift |
|||
| qth power (for complex $q$) |
$\text{Re}\{q\} > -1 $ |
Integrate unit step $n$ times, apply time shift |
||
| exponential decay | Frequency shift of unit step |
|||
| two-sided exponential decay | Frequency shift of unit step |
|||
| exponential approach | Unit step minus exponential decay |
|||
| sine | pythagorean in s-domain | |||
| cosine | pythagorean in s-domain | |||
| hyperbolic sine | s-domain shifted 90 | |||
| hyperbolic cosine | s-domain shifted 90 | |||
| Exponentially-decaying sine wave |
frequency shift | |||
| Exponentially-decaying cosine wave |
frequency shift | |||
| nth root | Domain extension of factorial/gamma |
|||
| natural logarithm | inverse? | |||
| Bessel function of the first kind, of order $n$ |
$ n > -1 $ |
It's'a J (Bessel) | ||
| Error function | erf is an anagram for ref |
Note: This table provides common Laplace transform pairs. The region of convergence (ROC) is crucial for the uniqueness of the inverse transform. For causal systems, the ROC is typically to the right of the rightmost pole. The notation $u(t)$ represents the unit step function.