The image contains a collection of trigonometric formulas and identities, organized into several categories:
$\tan \theta = \frac{\sin \theta}{\cos \theta}$
$\cot \theta = \frac{\cos \theta}{\sin \theta}$
$\csc \theta = \frac{1}{\sin \theta}$
$\sec \theta = \frac{1}{\cos \theta}$
$\cot \theta = \frac{1}{\tan \theta}$
$\sin \theta = \frac{1}{\csc \theta}$
$\cos \theta = \frac{1}{\sec \theta}$
$\tan \theta = \frac{1}{\cot \theta}$
$\sin^2 \theta + \cos^2 \theta = 1$
$\tan^2 \theta + 1 = \sec^2 \theta$
$1 + \cot^2 \theta = \csc^2 \theta$
$\sin(-\theta) = -\sin \theta$
$\cos(-\theta) = \cos \theta$
$\tan(-\theta) = -\tan \theta$
$\csc(-\theta) = -\csc \theta$
$\sec(-\theta) = \sec \theta$
$\cot(-\theta) = -\cot \theta$
$\sin(\theta + 2\pi n) = \sin \theta$
$\cos(\theta + 2\pi n) = \cos \theta$
$\tan(\theta + \pi n) = \tan \theta$
$\csc(\theta + 2\pi n) = \csc \theta$
$\sec(\theta + 2\pi n) = \sec \theta$
$\cot(\theta + \pi n) = \cot \theta$
$\sin(2\theta) = 2 \sin \theta \cos \theta$
$\cos(2\theta) = \cos^2 \theta - \sin^2 \theta $
$ \qquad = 2 \cos^2 \theta - 1 $
$ \qquad = 1 - 2 \sin^2 \theta$
$\tan(2\theta) = \frac{2 \tan \theta}{1 - \tan^2 \theta}$
$\sin^2 \theta = \frac{1}{2}(1 - \cos(2\theta))$
$\cos^2 \theta = \frac{1}{2}(1 + \cos(2\theta))$
$\tan^2 \theta = \frac{1 - \cos(2\theta)}{1 + \cos(2\theta)}$
$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$
$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$
$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$
$\sin \alpha \sin \beta = \frac{1}{2}[\cos(\alpha - \beta) - \cos(\alpha + \beta)]$
$\cos \alpha \cos \beta = \frac{1}{2}[\cos(\alpha - \beta) + \cos(\alpha + \beta)]$
$\sin \alpha \cos \beta = \frac{1}{2}[\sin(\alpha + \beta) + \sin(\alpha - \beta)]$
$\sin \alpha + \sin \beta = 2 \sin\left(\frac{\alpha + \beta}{2}\right) \cos\left(\frac{\alpha - \beta}{2}\right)$
$\sin \alpha - \sin \beta = 2 \cos\left(\frac{\alpha + \beta}{2}\right) \sin\left(\frac{\alpha - \beta}{2}\right)$
$\cos \alpha + \cos \beta = 2 \cos\left(\frac{\alpha + \beta}{2}\right) \cos\left(\frac{\alpha - \beta}{2}\right)$
$\cos \alpha - \cos \beta = -2 \sin\left(\frac{\alpha + \beta}{2}\right) \sin\left(\frac{\alpha - \beta}{2}\right)$
$\sin\left(\frac{\pi}{2} - \theta\right) = \cos \theta$
$\cos\left(\frac{\pi}{2} - \theta\right) = \sin \theta$
$\tan\left(\frac{\pi}{2} - \theta\right) = \cot \theta$
$\csc\left(\frac{\pi}{2} - \theta\right) = \sec \theta$
$\sec\left(\frac{\pi}{2} - \theta\right) = \csc \theta$
$\cot\left(\frac{\pi}{2} - \theta\right) = \tan \theta$
If $x$ is an angle in degrees and $t$ is an angle in radians, then:
$\frac{\pi}{180} = \frac{t}{x} \quad \Rightarrow \quad t = \frac{\pi x}{180}\quad$
and $\quad x = \frac{180t}{\pi}$
These formulas are fundamental in trigonometry and are used to simplify trigonometric expressions, solve trigonometric equations, and prove identities.